Abstract

A distinctive characteristic of the biological cell is its ability to mechanically deform to crawl or squeeze through trapped spaces. When a cell is taken apart, the structural deformation of its cellular components as biological matter can be manipulated by electrical and magnetic fields. Their response to the external fields opens an opportunity for biomedical intervention of controlling the movement of a cell. The understanding of the coupling between the mechanical deformation and the nonlinear electromagnetic behavior, however, requires the formulation of electrostatics and continuum mechanics in elastic material. This review reports on several major advances in elucidating the physics of biological matter and surveys new challenges pertinent to cellular biomechanics.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call