Abstract

Extracellular ATP elevates cytosolic Ca(2+) by activating P2X and P2Y purinoceptors and voltage-sensitive Ca(2+) channels (VCCCs) in PC-12 cells, thereby facilitating catecholamine secretion. We investigated the mechanism by which ATP activates VSCCs. 2-Methylthioadenosine 5'-triphosphate (2-MeS-ATP) and UTP were used as preferential activators of P2X and P2Y, respectively. Nifedipine inhibited the ATP- and 2-MeS-ATP-evoked cytosolic Ca(2+) concentration increase and [(3)H]norepinephrine secretion, but not the UTP-evoked responses. Studies with Ca(2+) channel blockers indicated that L-type VSCCs were activated after the P2X activation. Mn(2+) entry profiles and studies with thapsigargin revealed that Ca(2+) entry, rather than Ca(2+) release, was sensitive to nifedipine. Although P2X(2) and P2X(4) receptor mRNAs were detected, studies with pyridoxal phosphate-6-azophenyl-2',4'-disulfonic acid revealed that P2X(2) was mainly coupled to the L-type VSCCs. The inhibitory effect of nifedipine did not occur in the absence of extracellular Na(+), suggesting that Na(+) influx, which induces depolarization, was essential for the P2X(2)-mediated activation of VSCCs. We report that depolarization induced by Na(+) entry through the P2X(2) purinoceptors effectively activates L-type VSCCs in PC-12 cells.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call