Abstract
The mechanism behind ethanol-induced fatty liver was investigated by administration of [1,1- 2H 2]ethanol to rats and analysis of intermediates in lipid biosynthesis. Phosphatidic acid and phosphatidylcholine were isolated by chromatography on a lipophilic anion exchanger and molecular species were isolated by high-performance liquid chromatography in a non-aqueous system. The glycerol moieties of palmitoyl-linoleoylphosphatidic acid, the corresponding phosphatidylcholine and free sn-glycerol-3-phosphate were analysed by GC/MS of methyl ester t-butyldimethylsilyl derivatives. The deuterium labelling in the glycerol moiety of the phosphatidic acid was 2–3-times higher than in free sn-glycerol-3-phosphate, indicating that a specific pool of sn-glycerol-3-phosphate was used for the synthesis of phosphatidic acid in liver. The results indicate that NADH formed during ethanol oxidation is used in the formation of a pool of sn-glycerol-3-phosphate that gives rise to triacylglycerol and possibly fatty liver.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Biochimica et Biophysica Acta (BBA)/Lipids and Lipid Metabolism
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.