Abstract
The immobilization methodology of enzyme and redox complex on electrode surfaces can have an impact on the magnitude and stability of amperometric current response, with implications for application as biosensor and fuel cell enzyme electrodes. Here we report on an investigation of carboxymethyl dextran (CMD) and polyacrylic acid polymers, bearing carboxylic functional groups, as chemical supports for immobilization of amine-containing osmium redox complexes and enzymes at electrode surfaces. Cross-coupling using carbodiimide reagent of the CMD polymer support, [Os (2,2′-bipyridine)2(4-aminomethyl pyridine)Cl].PF6 redox complex, glucose oxidase (GOx) and multiwall carbon nanotubes (MWCNT), provides a 3-dimensional matrix for catalytic electro-oxidation of glucose yielding current density of 1.0 ± 0.2 mA cm−2 and 4.5 ± 1.0 mA cm−2 at 0.45 V vs. Ag/AgCl, in 50 mM phosphate buffer saline (pH 7.4, 37°C) containing 5 mM and saturated glucose amounts, respectively. Similar enzyme electrodes, but instead using [Os (4,4′-dimethoxy-2,2′-bipyridine)2(4-aminomethyl pyridine)Cl].PF6 of lower redox potential, produce current densities of 0.83 ± 0.21 mA cm−2 in 5 mM glucose and 3.4 ± 0.7 mA cm−2 in saturated glucose solution at 0.2 V vs. Ag/AgCl thus showing promise for application as low potential glucose oxidizing biosensors and as anodes for in-vivo enzymatic fuel cells for power generation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.