Abstract

The Schrödinger equation is a model for many physical processes in quantum physics. It is a singularly perturbed differential equation where the presence of the small reduced Planck's constant makes the classical numerical methods very costly and inefficient. We design two new schemes. The first scheme is the nonstandard finite volume method, whereby the perturbation term is approximated by nonstandard technique, the potential is approximated by its mean value on the cell and the complex dependent boundary conditions are handled by exact schemes. In the second scheme, the deficiency of classical schemes is corrected by the inner expansion in the boundary layer region. Numerical simulations supporting the performance of the schemes are presented.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.