Abstract

For solving time-dependent convection-dominated partial differential equations (PDEs), which arise frequently in computational physics, high order numerical methods, including finite difference, finite volume, finite element and spectral methods, have been undergoing rapid developments over the past decades. In this article we give a brief survey of two selected classes of high order methods, namely the weighted essentially non-oscillatory (WENO) finite difference and finite volume schemes and discontinuous Galerkin (DG) finite element methods, emphasizing several of their recent developments: bound-preserving limiters for DG, finite volume and finite difference schemes, which address issues in robustness and accuracy; WENO limiters for DG methods, which address issues in non-oscillatory performance when there are strong shocks, and inverse Lax–Wendroff type boundary treatments for finite difference schemes, which address issues in solving complex geometry problems using Cartesian meshes.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call