Abstract

In order to comprehensively understand the forming mechanism of abnormal phases solidified in a nickel-base cast superalloy with additives of tungsten and molybdenum, the coupling effects of W and Mo on the microstructure and stress-rupture properties were investigated in this paper. The results indicated that the precipitation of primary α-(W, Mo) phase depended tremendously on the amount of W and Mo addition. When the total amount of W and Mo was greater than 5.79 at%, α-(W, Mo) phase became easily precipitated in the alloy. With increasing of Mo/W ratio, the dendrite-like α-(W, Mo) phases were apt to convert into small bars or blocky-like phases at the vicinities of γ′/γ eutectic. The morphological changes of α-(W, Mo) phase can be interpreted as the non-equilibrium solidification of W and Mo in the alloy. Since the large sized α-(W, Mo) phase has detrimental effects on stress-rupture properties in as-cast conditions, secondary cracks may mainly initiate at and then propagate along the interfaces of brittle phases and soft matrix. During exposing at 1100 ℃ for 1000 h, the α-(W, Mo) phases transformed gradually into bigger and harder M6C carbide, which results in decreasing of stress-rupture properties of the alloy. Finally, the alloy with an addition of 14W-1Mo(wt%) maintained the longest stress lives at high temperatures and therefore it revealed the best microstructure stability after 1100 ℃/1000 h thermal exposure.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.