Abstract
Timely identification of human papillomavirus (HPV) infection is crucial for the prevention of cervical cancer. Current HPV detection methods mainly rely on polymerase chain reaction (PCR), which often requires bulky equipment and a long assay time. In this work, we report a heating-membrane-assisted multiplexed microfluidics platform that couples recombinase polymerase amplification (RPA) and CRISPR technology (termed M3-CRISPR) for fast and low-cost detection of multiple HPV subtypes. The heating membrane can provide convenient temperature control for the on-chip RPA and CRISPR assays. This stand-alone system allows simultaneous detection of HPV16 and HPV18 with high specificity and detection sensitivity (0.5 nM and 1 × 10-18 M for unamplified and amplified plasmids, respectively) in 30 min with a fluorescence-based readout. Furthermore, we introduced an optimized lateral flow dipstick (LFD) into the portable system to allow visualized detection of HPV DNA. The LFD-based readout also reached a detection sensitivity of 1 × 10-18 M for amplified plasmids and realized successful detection of HPV subtypes in the clinical samples. Finally, we established an automatic microfluidic system that enables the sample-in-answer-out detection of HPV subtypes. We believe that this fast, convenient, and affordable molecular diagnostic platform can serve as a useful tool in point-of-care testing of HPV or other pathogens.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.