Abstract

Transient hydrogeochemical anomalies were detected in a granite-hosted aquifer, which is located at a depth of 110 m, north of the Shillong Plateau, Assam, India, where groundwater chemistry is mainly buffered by feldspar alteration to kaolinite. Their onsets preceded moderate earthquakes on December 9, 2004 (MW = 5.3) and February 15, 2005 (MW = 5.0), respectively, 206 and 213 km from the aquifer. The ratios [Na+K]/Si, Na/K and [Na+K]/Ca, conductivity, alkalinity and chloride concentration began increasing 3–5 weeks before the MW = 5.3 earthquake. By comparison with field, experimental and theoretical studies, we interpret a transient switchover between source aquifers, which induced an influx of groundwater from a second aquifer, where groundwater chemistry was dominantly buffered by the alteration of feldspar to smectite. This could have occurred in response to fracturing of a hydrological barrier. The ratio Ba/Sr began decreasing 3–6 days before the MW = 5.0 earthquake. We interpret a transient switchover to anorthite dissolution caused by exposure of fresh plagioclase to groundwater interaction. This could have been induced by microfracturing, locally within the main aquifer. By comparison with experimental studies of feldspar dissolution, we interpret that hydrogeochemical recovery was facilitated by groundwater interaction and clay mineralization, which could have been coupled with fracture sealing. The coincidence in timing of these two hydrogeochemical events with the only two MW ≥ 5 earthquakes in the study area argues in favor of cause-and-effect seismic-hydrogeochemical coupling. However, reasons for ambiguity include the lack of similar hydrogeochemical anomalies coupled with smaller seismic events near the monitoring station, the >200 km length scale of inferred seismic-hydrogeochemical coupling, and the potential for far-field effects related to the Great Sumatra–Andaman Islands Earthquake of December 26, 2004.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.