Abstract
Abstract Recent efforts coupling our Sun-to-Earth magnetohydrodynamics (MHD) model and lower-corona magnetofrictional (MF) model are described. Our Global Heliospheric MHD (GHM) model uses time-dependent three-component magnetic field data from the lower-corona MF model as time-dependent boundary values. The MF model uses data-assimilation techniques to introduce the vector magnetic field data from the Solar Dynamics Observatory/Helioseismic and Magnetic Imager, hence as a whole this simulation coupling structure is driven with actual observations. The GHM model employs a newly developed interface boundary treatment that is based on the concept of characteristics, and it properly treats the interface boundary sphere set at a height of the sub-Alfvénic lower corona (1.15 R ⊙ in this work). The coupled model framework numerically produces twisted nonpotential magnetic features and consequent eruption events in the solar corona in response to the time-dependent boundary values. The combination of our two originally independently developed models presented here is a model framework toward achieving further capabilities of modeling the nonlinear time-dependent nature of magnetic field and plasma, from small-scale solar active regions to large-scale solar wind structures. This work is a part of the Coronal Global Evolutionary Model project for enhancing our understanding of Sun–Earth physics to help improve space weather capabilities.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have