Abstract

Abstract Recent efforts coupling our Sun-to-Earth magnetohydrodynamics (MHD) model and lower-corona magnetofrictional (MF) model are described. Our Global Heliospheric MHD (GHM) model uses time-dependent three-component magnetic field data from the lower-corona MF model as time-dependent boundary values. The MF model uses data-assimilation techniques to introduce the vector magnetic field data from the Solar Dynamics Observatory/Helioseismic and Magnetic Imager, hence as a whole this simulation coupling structure is driven with actual observations. The GHM model employs a newly developed interface boundary treatment that is based on the concept of characteristics, and it properly treats the interface boundary sphere set at a height of the sub-Alfvénic lower corona (1.15 R ⊙ in this work). The coupled model framework numerically produces twisted nonpotential magnetic features and consequent eruption events in the solar corona in response to the time-dependent boundary values. The combination of our two originally independently developed models presented here is a model framework toward achieving further capabilities of modeling the nonlinear time-dependent nature of magnetic field and plasma, from small-scale solar active regions to large-scale solar wind structures. This work is a part of the Coronal Global Evolutionary Model project for enhancing our understanding of Sun–Earth physics to help improve space weather capabilities.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.