Abstract

By drawing an analogy with the conventional photonic crystals, the plasmonic bandgaps have mainly employed the periodic metallic structures, named as plasmonic crystals. However, the sizes of the plasmonic crystals are much larger than the wavelengths, and the large sizes considerably decrease the density of the photonic integration circuits. Here, based on the coupled-resonator effect, the plasmonic bandgaps are experimentally realized in the subwavelength waveguide-resonator structure, which considerably decreases the structure size to subwavelength scales. An analytic model and the phase analysis are established to explain this phenomenon. Both the experiment and simulation show that the plasmonic bandgap structure has large fabrication tolerances (>20%). Instead of the periodic metallic structures in the bulky plasmonic crystals, the utilization of the subwavelength plasmonic waveguide-resonator structure not only significantly shrinks the bandgap structure to be about λ2/13, but also expands the physics of the plasmonic bandgaps. The subwavelength dimension, together with the waveguide configuration and robust realization, makes the bandgap structure easy to be highly integrated on chips.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.