Abstract

The two-phase flow generated behind a cavitating backward-facing step is studied using the combination of three experimental techniques: wall-pressure measurements, global high-speed imaging with visible light, and high spatial and temporal resolution x-ray imaging. Three zones are identified based on the topology of the vapor fraction maps, that correspond to vaporization, transport, and condensation. Simultaneous pressure and void fraction measurements reveal that extreme events are associated with a change from a shear layer mode to a wake mode, with a temporal signature that is heavily affected by the presence of the vapor phase.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.