Abstract
In study of hot and dense plasma, a high spatial resolution (a few microns) x-ray imaging is very important to observe these plasmas. The Fresnel phase zone plate (FPZP) consists of alternately material and transparent circular annuli placed concentrically, which image x rays using diffraction x rays from all annuli. FPZP have imaged 4.7–4.77 keV x rays with 2.2 μm spatial resolution. However FPZP has a problem that background level is comparable to signal level. In subtraction of background, the error of 10% is caused. For the accurate background subtraction, we designed new FPZP, which consist of three β layers of a transparent zone and two material zones. The new design FPZP parameters (thickness of material zones, each zone width) have been optimized, and in that optimum design signal-to-background ratio is 4 times better than conventional two layers FPZP.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.