Abstract

Nano-antennas play an important role in many areas of science and technology. It is desirable to achieve strong electric field enhancement by nano-antenna. In this paper, we simulate a symmetrical V-structured nano-antenna that is used to regulate the electromagnetic fields in the central gap region. We study the effects of structural parameters on the charge distribution and analyze the electric field enhancement factor in the central region of the nano-antenna. Then we use structural coupling methods to strengthen electromagnetic field intensity in the central region. Our results demonstrate that the charge distribution of the nano-antenna can be controlled by regulating the structural parameters, leading to the change of electromagnetic field intensity. In addition, electric field enhancement is achieved by coupling of multiple V structures. The multiple V structure could be used in surface-enhanced Raman scattering due to the electric field enhancement in its central region.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call