Abstract
AbstractSemiconductor‐based surface‐enhanced Raman spectroscopy (SERS) substrates, as a new frontier in the field of SERS, are hindered by their poor electromagnetic field confinement and weak light‐matter interaction. Metasurfaces, a class of 2D artificial materials based on the electromagnetic design of nanophotonic resonators, enable strong electromagnetic field enhancement and optical absorption engineering for a wide range of semiconductors. However, the engineering of semiconductor substrates into metasurfaces for improving SERS activity remains underexplored. Here, an improved SERS metasurface platform is developed that leverages the combination of titanium oxide (TiO2) and the emerging physical concept of optical bound states in the continuum (BICs) to boost the Raman emission. Moreover, fine‐tuning of BIC‐assisted resonant absorption offers a pathway for maximizing the photoinduced charge transfer effect (PICT) in SERS. High values of BIC‐assisted electric field enhancement (|E/E0|2 ≈103) are achieved, challenging the preconception of weak electromagnetic (EM) field enhancement on semiconductor SERS substrates. The BIC‐assisted TiO2 metasurface platform offers a new dimension in spectrally‐tunable SERS with earth‐abundant and bio‐compatible semiconductor materials, beyond the traditional plasmonic ones.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.