Abstract

In this paper, we analyse the propagation of a small density perturbation in a one-dimensional compressible fluid by means of fractional calculus modelling, replacing thus the ordinary time derivative with the Caputo fractional derivative in the constitutive equations. By doing so, we embrace a vast phenomenology, including subdiffusive, superdiffusive, and also memoryless processes such as classical diffusions. From a mathematical point of view, we study systems of coupled fractional equations, leading to fractional diffusion equations or to equations with sequential fractional derivatives. In this framework, we also propose a method to solve partial differential equations with sequential fractional derivatives by analysing the corresponding coupled system of equations.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.