Abstract

The coupled resonance mechanism of interface stratification of thin coating structures excited by horizontal shear waves is investigated by the forced vibration solution derived from the global matrix method, the integral transformation method, and the plane wave perturbation method. The interface shear stress reaches the peak at coupling resonance frequencies which are an inherent property of the structure, and decreases with the increase of coating thickness or the increase of shear wave velocity difference between the substrate and coating. At the coupling resonance frequency, the thin coating structure is more easily stratified at the interface. The result could provide a theoretical basis for the popularization and application of ultrasonic deicing/defrosting/de-accretion technology.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.