Abstract

Shear horizontal (SH) waves are of great importance in structural health monitoring (SHM) and nondestructive testing (NDT), since the lowest order SH wave in isotropic plates is non-dispersive. The SH waves in plates, circumferential SH waves and torsional waves in pipes have remarkable resemblances in dispersion characteristics and wave structures, so the latter two can also be called as SH waves in pipes. This paper reviews the state-of-the-art research on SH wave transducers for SHM and NDT. These transducers are grouped into the following categories: Lorentz-force-based electromagnetic acoustic transducers (EMATs), magnetostrictive EMATs, shear wave piezoelectric wedge transducers, thickness-shear piezoelectric transducers and face-shear piezoelectric transducers. The working principles, applications, merits and limitations of different kinds of SH wave transducers are summarized, with a focus on discussing the various configurations for exciting and receiving directional, omnidirectional SH waves in plates and torsional waves in pipes. This paper is expected to greatly promote the applications of SH waves in SHM, NDT and the related areas such as elastic metamaterials.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call