Abstract

The wind-driven nature of large lakes suggests that the accuracy of meteorological inputs is essential for hydrodynamic modelling. Moreover, coupling between the meteorological inputs and density stratification may also influence the simulated lake behavior. To investigate wind-driven large lake processes, a high-resolution coupled Delft3D-SWAN model was applied to Lake Ontario to simulate storm surges, surface waves, and circulation during two recent storm events. In both events, the sustained wind speeds approached 20 m s−1; however, variations in wind direction and duration altered the lake's surface wave and storm surge responses. The influence of different atmospheric inputs was investigated by comparing results from two spatially varied atmospheric models: the Rapid Refresh (RAP) and the High-Resolution Deterministic Prediction System (HRDPS). Hydrodynamic simulations using HRDPS were marginally better, with maximum root mean squared errors (RMSE) between modelled and observed water levels of 0.07 m, compared to 0.08 m with RAP. Predictions of the magnitude and timing of the maximum wave heights varied based on wind fields, with differences between predicted peak wave heights of up to 0.4 m. Both events occurred during a stratified period, allowing for a comparative evaluation of the influence of baroclinic and barotropic processes on the simulated surface wave and storm surge results. Simulations including the vertical density gradient gave a better representation of current velocities with depth and resulted in an improved prediction of peak storm surge magnitudes and surface water level behavior following the storms, reducing the RMSE by up to 12%.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call