Abstract

Changes over time in 16 physical and chemical variables were analysed and compared between Sweden’s largest lakes, Vattern and Vanern, and 48 smaller Swedish reference lakes during spring over the period 1984–2003. The rates of changes varied substantially among lakes and among variables, and they were clearly influenced by changes in both climate and atmospheric deposition. Rates of change of variables associated with atmospheric deposition such as sulphate concentrations were dependent on lake morphometry. This also applied to the rates of change of variables associated with climate change effects in the catchment such as calcium and magnesium concentrations. However, climate change effects could also be comparable between large and small lakes. Rates of change in physical and chemical variables directly influenced by the climate via the lake water surface, e.g., surface water temperature, and variables associated with the spring phytoplankton development such as phosphate–phosphorus and nitrate–nitrogen concentrations, were similar and therefore independent of lake morphometry. This study shows that climate change effects that act via the lake surface can be of the same order of magnitude among large and small lakes, but climate change effects that act via the catchment differ substantially in large lakes. It is essential to differentiate between these two types of climate effects in order to assess the impacts of climate change and the adaptation and vulnerability of lake ecosystems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.