Abstract

AbstractA model of Twin-cell Composite Box Beam (TCCBB), which is composed of concrete plate and thin-walled steel box beam with twin-cell, is proposed in this paper. Combined with structural features, longitudinal interfacial slip mode (LISM) and related shear hysteresis functions (SHFS) of this TCCBB model are defined respectively; analytical formulation describing combination effect between interfacial slip and shear lag is launched for this TCCBB model under even load. Based on established governing differential equations and its relative boundary conditions (calculated with compatible mechanism of interfacial slip and shear lag effect), closed form solutions of normal stress and shear stress are derived for this TCCBB model, as well as effective shear-lag coefficient and effective coupled behavior coefficient. To obtain more accurate computational results of specific coupled mechanism of this TCCBB model, numerical example is carried out to analyze and predict coupled mechanism of interfacial slip and shear lag effect for this type of composite structures.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call