Abstract
SummaryFor thin elastic structures submerged in heavy fluid, e.g., water, a strong interaction between the structural domain and the fluid domain occurs and significantly alters the eigenfrequencies. Therefore, the eigenanalysis of the fluid–structure interaction system is necessary. In this paper, a coupled finite element and boundary element (FE–BE) method is developed for the numerical eigenanalysis of the fluid–structure interaction problems. The structure is modeled by the finite element method. The compressibility of the fluid is taken into consideration, and hence the Helmholtz equation is employed as the governing equation and solved by the boundary element method (BEM). The resulting nonlinear eigenvalue problem is converted into a small linear one by applying a contour integral method. Adequate modifications are suggested to improve the efficiency of the contour integral method and avoid missing the eigenvalues of interest. The Burton–Miller formulation is applied to tackle the fictitious eigenfrequency problem of the BEM, and the optimal choice of its coupling parameter is investigated for the coupled FE–BE method. Numerical examples are given and discussed to demonstrate the effectiveness and accuracy of the developed FE–BE method. Copyright © 2016 John Wiley & Sons, Ltd.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal for Numerical Methods in Engineering
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.