Abstract

This paper establishes a theoretical model to explore the coupled effect of grain boundary (GB) sliding deformation and crack tip dislocation emission on the critical stress intensity factor (SIF) for crack growth in ultrafine-grained and nanocrystalline materials (NCMs). The model postulates that the stress concentration near a crack tip initiates GB sliding. It is found that GB sliding leads to the formation of wedge disclination dipole at the triple junctions of grain boundaries. Under the external load and stress fields produced by wedge disclinations, dislocations are emitted from crack tips but will stop at the opposite GBs. The influence of the wedge disclination dipole and the dislocation emitted from crack tip on the critical SIF for crack growth is investigated. The model prediction shows that the critical SIF varies with the decrement of grain size, and that there is a critical grain size corresponding to a minimum value of SIF. Compared with the pure brittle fracture in NCMs at the grain sizes of tens of nanometers, the combined deformation mechanisms can bring an increase of the critical SIF for crack growth.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.