Abstract

An array of spin torque oscillators (STOs) for practical applications such as pattern recognition was recently proposed, where several STOs are connected by a common nonmagnet. In this structure, in addition to the electric and/or magnetic interactions proposed in previous works, the STOs are spontaneously coupled to each other through the nonmagnetic connector, due to the injection of spin current. Solving the Landau-Lifshitz-Gilbert equation numerically for such system consisting of three STOs driven by the spin Hall effect, it is found that both in-phase and antiphase synchronization of the STOs can be achieved by adjusting the current density and appropriate distance between the oscillators.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.