Abstract

The inherent nonlinear magnetization dynamics in spintronic devices make them suitable candidates for neuromorphic hardware. Among spintronic devices, spin torque oscillators such as spin transfer torque oscillators and spin Hall oscillators have shown the capability to perform recognition tasks. In this paper, with the help of micromagnetic simulations, we model and demonstrate that the magnetization dynamics of a single spin Hall oscillator can be nonlinearly transformed by harnessing input pulse streams and can be utilized for classification tasks. The spin Hall oscillator utilizes the microwave spectral characteristics of its magnetization dynamics for processing a binary data input. The spectral change due to the nonlinear magnetization dynamics assists in real-time feature extraction and classification of 4-binary digit input patterns. The performance was tested for the classification of the standard MNIST handwritten digit data set and achieved an accuracy of 83.1% in a simple linear regression model. Our results suggest that modulating time-driven input data can generate diverse magnetization dynamics in the spin Hall oscillator that can be suitable for temporal or sequential information processing.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.