Abstract
An array of spin torque oscillators (STOs) for practical applications such as pattern recognition was recently proposed, where several STOs are connected by a common nonmagnet. In this structure, in addition to the electric and/or magnetic interactions proposed in previous works, the STOs are spontaneously coupled to each other through the nonmagnetic connector, due to the injection of spin current. Solving the Landau-Lifshitz-Gilbert equation numerically for such system consisting of three STOs driven by the spin Hall effect, it is found that both in-phase and antiphase synchronization of the STOs can be achieved by adjusting the current density and appropriate distance between the oscillators.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.