Abstract
The purpose of this study was to develop a coupled accurate multi-physics model of the SAFARI-1 Material Testing Reactor (MTR), a facility that is used for both research and the production of medical isotopes. The model was developed as part of the SAFARI-1 benchmarking project as a cooperative effort between the Pennsylvania State University (PSU) and the South African Nuclear Energy Corporation (Necsa). It was created using a multi-physics coupling of state of the art nuclear reactor simulation tools, consisting of a neutronics code and a thermal hydraulics code.The neutronics tool used was the PSU code NEM, and the results from this component were verified using the Necsa neutronics code OSCAR-4, which is utilized for SAFARI-1 core design and fuel management. On average, the multiplication factors of the neutronics models agreed to within 5pcm and the radial assembly-averaged powers agreed to within 0.2%.The thermal hydraulics tool used was the PSU version of COBRA-TF (CTF) sub-channel code, and the results of this component were verified against another thermal hydraulics code, the RELAP5-3D system code, used at Necsa for thermal–hydraulics analysis of SAFARI-1. Although only assembly-averaged results from RELAP5-3D were available, they fell within the range of values for the corresponding assemblies in the comprehensive CTF solution. This comparison allows for the first time to perform a quantification of steady-state errors for a low-powered MTR with an advanced thermal–hydraulic code such as CTF on a per-channel basis as compared to simpler and coarser-mesh RELAP5-3D modeling. Additionally, a new cross section representation was used to ensure that the thermal hydraulic feedback effects on the core neutronics were captured as accurately as possible. This cross section representation was applied to SAFARI-1 core calculations for the first time in this work. Such implementation helps to quantify the effect of detailed modeling of thermal–hydraulics feedback effects on neutronics results in multi-physics simulations.The outcome of the study is the intended coupled neutronics/thermal–hydraulics model of the SAFARI-1 reactor.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have