Abstract

Yield prediction is of great significance for yield mapping, crop market planning, crop insurance, and harvest management. Remote sensing is becoming increasingly important in crop yield prediction. Based on remote sensing data, great progress has been made in this field by using machine learning, especially the Deep Learning (DL) method, including Convolutional Neural Network (CNN) or Long Short-Term Memory (LSTM). Recent experiments in this area suggested that CNN can explore more spatial features and LSTM has the ability to reveal phenological characteristics, which both play an important role in crop yield prediction. However, very few experiments combining these two models for crop yield prediction have been reported. In this paper, we propose a deep CNN-LSTM model for both end-of-season and in-season soybean yield prediction in CONUS at the county-level. The model was trained by crop growth variables and environment variables, which include weather data, MODIS Land Surface Temperature (LST) data, and MODIS Surface Reflectance (SR) data; historical soybean yield data were employed as labels. Based on the Google Earth Engine (GEE), all these training data were combined and transformed into histogram-based tensors for deep learning. The results of the experiment indicate that the prediction performance of the proposed CNN-LSTM model can outperform the pure CNN or LSTM model in both end-of-season and in-season. The proposed method shows great potential in improving the accuracy of yield prediction for other crops like corn, wheat, and potatoes at fine scales in the future.

Highlights

  • Crop yield is the most important indicator in agriculture and has numerous connections with human society

  • Accurate early yield prediction is of great significance for crop market planning, crop insurance, and harvest management

  • A Google Earth Engine (GEE)-based Convolutional Neural Network (CNN)-Long Short-Term Memory (LSTM) model was proposed for both in-season and end-of-season soybean yield prediction by county-level in CONUS

Read more

Summary

Introduction

Crop yield is the most important indicator in agriculture and has numerous connections with human society. Remote sensing has been widely used in agricultural applications including cropland cover classification, drought stress estimation, and yield prediction by under its macro-performance and periodicity [2]. Index (NDVI), have been widely utilized [3,4,5,6]. The other indices, such as Green Leaf Area Index (GLAI) [7], Crop Water Stress Index (CWSI) [8], Normalized Difference Water Index (NDWI) [9], Green Vegetation Index (GVI), Soil-Adjusted Vegetation Index (SAVI) [10], Enhanced Vegetation Index (EVI) [11], etc., have been used for crop production forecasting.

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call