Abstract

Satellite top-of-atmosphere (TOA) reflectance has been validated as an effective index for estimating PM2.5 concentrations due to its high spatial coverage and relatively high spatial resolution (i.e., 1 km). For this paper, we developed an emsembled random forest (RF) model incorporating satellite top-of-atmosphere (TOA) reflectance with four categories of supplemental parameters to derive the PM2.5 concentrations in the region of the Yangtze River Delta-Fujian (i.e., YRD-FJ) located in east China. The landscape pattern indices at two levels (i.e., type level and overall level) retrieved from 3-year land classification imageries (i.e., 2016, 2018, and 2020) were used to discuss the correlation between county-based PM2.5 values and landscape pattern. We achieved a cross validation R2 of 0.91 (RMSE = 9.06 μg/m3), 0.89 (RMSE = 10.19 μg/m3), and 0.90 (RMSE = 8.02 μg/m3) between the estimated and observed PM2.5 concentrations in 2016, 2018, and 2020, respectively. The PM2.5 distribution retrieved from the RF model showed a trend of a year-on-year decrease with the pattern of “Jiangsu > Shanghai > Zhejiang > Fujian” in the YRD-FJ region. Our results also revealed that the landscape pattern of farmland, water bodies, and construction land exhibited a highly positive relationship with the county-based average PM2.5 values, as the r coefficients reached 0.74 while the forest land was negatively correlated with the county-based PM2.5 (r = 0.84). There was also a significant correlation between the county-based PM2.5 and shrubs (r = 0.53), grass land (r = 0.76), and bare land (r = 0.60) in the YRD-FJ region, respectively. Three landscape pattern indices at an overall level were positively correlated with county-based PM2.5 concentrations (r = 0.80), indicating that the large landscape fragmentation, edge density, and landscape diversity would raise the PM2.5 pollution in the study region.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.