Abstract

We study a family of equivalence relations on $S_n$, the group of permutations on $n$ letters, created in a manner similar to that of the Knuth relation and the forgotten relation. For our purposes, two permutations are in the same equivalence class if one can be reached from the other through a series of pattern-replacements using patterns whose order permutations are in the same part of a predetermined partition of $S_c$.When the partition is of $S_3$ and has one nontrivial part and that part is of size greater than two, we provide formulas for the number of classes created in all cases left unresolved by past authros. When the partition is of $S_3$ and has two nontrivial parts, each of size two (as do the Knuth and forgotten relations), we enumerate the classes for 13 of the 14 unresolved cases. In two of these cases, enumerations arise which are the same as those yielded by the Knuth and forgotten relations. The reasons for this phenomenon are still largely a mystery.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.