Abstract

We solve two problems regarding the enumeration of lattice paths in \(\mathbb{Z}^2\) with steps \((1,1)\) and \((1,-1)\) with respect to the major index, defined as the sum of the positions of the valleys, and to the number of certain crossings. The first problem considers crossings of a single path with a fixed horizontal line. The second one counts pairs of paths with respect to the number of times they cross each other. Our proofs introduce lattice path bijections with convenient visual descriptions, and the answers are given by remarkably simple formulas involving \(q\)-binomial coefficients.Mathematics Subject Classifications: 05A19, 05A15, 05A30Keywords: Lattice path, major index, crossing, valley, bijection

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.