Abstract
We investigate Mahonian and Eulerian probability distributions given by inversions and descents in general finite Coxeter groups. We provide uniform formulas for the means and variances in terms of Coxeter group data in both cases. We also provide uniform formulas for the double-Eulerian probability distribution of the sum of descents and inverse descents. We finally establish necessary and sufficient conditions for general sequences of Coxeter groups of increasing rank under which Mahonian and Eulerian probability distributions satisfy central and local limit theorems.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.