Abstract
The numbers game is a one-player game played on a finite simple graph with certain “amplitudes” assigned to its edges and with an initial assignment of real numbers to its nodes. The moves of the game successively transform the numbers at the nodes using the amplitudes in a certain way. This game and its interactions with Coxeter/Weyl group theory and Lie theory have been studied by many authors. In particular, Eriksson connects certain geometric representations of Coxeter groups with games on graphs with certain real number amplitudes. Games played on such graphs are “E-games”. Here we investigate various finiteness aspects of E-game play: We extend Eriksson’s work relating moves of the game to reduced decompositions of elements of a Coxeter group naturally associated to the game graph. We use Stembridge’s theory of fully commutative Coxeter group elements to classify what we call here the “adjacency-free” initial positions for finite E-games. We characterize when the positive roots for certain geometric representations of finite Coxeter groups can be obtained from E-game play. Finally, we provide a new Dynkin diagram classification result of E-game graphs meeting a certain finiteness requirement.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.