Abstract
The deepfake technology is conveniently abused with the low technology threshold, which may bring the huge social security risks. As GAN-based synthesis technology is becoming stronger, various methods are difficult to classify the fake content effectively. However, although the fake content generated by GANs can deceive the human eyes, it ignores the biological signals hidden in the face video. In this paper, we proposed a novel video forensics method with multidimensional biological signals, which extracting the difference of the biological signal between real and fake videos from three dimensions. The experimental results show that our method achieves 98% accuracy on the main public dataset. Compared with other technologies, the proposed method only extracts fake video information and is not limited to a specific generation method, so it is not affected by synthetic methods and has good adaptability.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.