Abstract

ABSCISIC ACID (ABA) INSENSITIVE5 (ABI5), the key regulator of abscisic acid (ABA) signaling pathway, plays a fundamental role in seed germination and postgerminative development. However, the detailed molecular mechanism underlying the repression function of ABI5 in these processes remains to be elucidated. In this study, we demonstrate that the conserved eukaryotic WD40 repeat protein RACK1 is a novel negative regulator of ABI5 in Arabidopsis. The RACK1 loss-of-function mutant is hypersensitive to ABA, while this phenotype was rescued by the mutation of ABI5. Moreover, overexpression of RACK1 suppresses ABI5 transcriptional activation activity for ABI5-targeted genes. RACK1 could also physically interact with ABI5 and facilitate its degradation. Furthermore, we found that RACK1 and the two substrate receptors for CUL4-based E3 ligases (DWA1 and DWA2) function together to mediate the turnover of ABI5, thereby efficiently turning down ABA signaling for seed germination and postgerminative growth. On the other hand, a series of molecular analyses demonstrated that ABI5 could bind with the promoter of RACK1 to repress its expression. Collectively, our findings suggest that RACK1 and ABI5 might form a feedback loop to regulate the homeostasis of ABA signaling for acute seed germination and early plant development.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call