Abstract

We report the first low-energy collisional excitation measurements and density functional theory calculations to characterize the ground state potential energy surfaces of contact ion-pair complexes that contain multiply charged anions (MCAs). Excitation of K+.Pt(CN)(4) (2-) and K+.Pt(CN)(6) (2-) result in fragmentation products associated with decay of the isolated constituent dianions, revealing that the ground state ion-pair surfaces are dominated by the intrinsic characteristics of the MCA. This observation is important since it indicates that counter-ion complexation only weakly perturbs the electronic structure of an MCA. For K+.Pt(CN)(4) (2-), where the Pt(CN)(4) (2-) dianion decays with production of two ionic fragments, we observe evidence for the existence of a novel exit-channel complex corresponding to a polar KCN salt unit bound to the Pt(CN)(3) (-) anion. The results described provide a basis for understanding the potential energy surfaces and fragmentation characteristics of other ion-pair complexes that involve MCAs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.