Abstract

Suspensions of microgel particles undergo a transition from liquid-like to solid-like mechanics upon increase of the microgel packing fraction. We study the opposed effects of the microgel softness and size on this transition. We tune the softness of the microgels by varying their polymer crosslinking density, while we simultaneously and independently vary their size and the contribution of Brownian particle motion by investigating two sets of colloidal-scale microgels synthesized by precipitation polymerization, along with one set of granular-scale microgels prepared by droplet-templated polymerization in microfluidic devices. We find that the microgel packing fraction at which the liquid-to-solid transition occurs depends on both the size and the softness of the microgel particles: small and soft microgels undergo this transition at much larger packing fractions than stiff microgels of the same size and than larger microgels with the same softness. This work suggests a systematic strategy to quantitatively predict this transition.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call