Abstract

The paper is devoted to a theoretical analysis of the counter-current gas−liquid film flow between vertical corrugated plates. We use the Navier−Stokes equations in their full statement to describe the liquid phase hydrodynamics. For the gas phase equations, we use the Benjamin−Miles approach where the wavy liquid/gas interface is a small disturbance for the turbulent gas and where we can linearize the gas phase governing equations. We consider both the steady state and the two-periodical traveling solutions of the counter-current gas/liquid flow between the corrugated plates. The changes in the liquid film hydrodynamics with the increase in gas superficial velocity are the main interest of the investigation. What is the flooding mechanism in the case of flow between the corrugated plates and does the gas superficial velocity for the flooding depend on the wall corrugation parameters?

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.