Abstract
In conditions where the interaction betweeen an atom and a short high-frequency extreme ultraviolet laser pulse is a perturbation, we show that a simple theoretical approach, based on Coulomb-Volkov-type states, can make reliable predictions for ionization. To avoid any additional approximation, we consider here a standard case : the ionization of hydrogen atoms initially in their ground state. For any field parameter, we show that the method provides accurate energy spectra of ejected electrons, including many above threshold ionization peaks, as long as the two following conditions are simultaneously fulfilled : (i) the photon energy is greater than or equal to the ionization potential ; (ii) the ionization process is not saturated. Thus, ionization of atoms or molecules by the high order harmonic laser pulses which are generated at present may be addressed through this Coulomb-Volkov treatment.
Submitted Version (Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have