Abstract

The structures, energies, and natural atomic charges of 2-dimethylaminophenol oxide, 2-Me2N-(O)C6H4OH, and 2-dimethylphosphinylphenol, 2-Me2P(O)C6H4OH, in three different conformations were computed at the ab initio MP2/6-31G* level. Computed natural charges indicate distributions of electron density in amine oxides and phosphine oxides that are quite different from what is normally assumed on the basis of the formal charges in the usual representations of these compounds. The charges on nitrogen and phosphorus in these compounds are typically computed to be approximately zero on nitrogen and +2 on phosphorus, and the oxygen is considerably more negative in the phosphine oxide than in the amino oxide. Electronegativity differences thus play a larger role and formal charges a smaller one in determining atomic charges in these compounds than is generally believed. Despite the more negative oxygen in phosphine oxides, amine oxides are computed to be considerably more basic when participating in hydrogen bonding. Calculations treating the computed natural charges on these six conformations as point charges for classical approximations of the coulombic energies support the idea that the quantum mechanically computed relative energies are largely determined by coulombic interactions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.