Abstract
We report on the observation of Coulomb drag between graphene-hexagonal boron nitride (h-BN) moiré heterostructure with a moiré wavelength of ∼14 nm and an intrinsic graphene with a lattice constant of ∼0.25 nm. By tuning carrier densities of each graphene layer independently, we find that charge carriers in moiré minibands, i.e., near satellite Dirac point (sDP), can be coupled with massless Fermions near the original Dirac point (oDP), strongly enough to generate a finite drag resistivity. At high temperature (T) and large density (n), the drag resistivities near both oDP and sDP follow a typical n^{-α} (α=1.3-1.7) and T^{2} power law dependence as expected for the momentum transfer process and it also satisfies the layer reciprocity. In contrast, at low T, the layer reciprocity is broken in both oDP-oDP and sDP-oDP coupled regions that suggest dominant energy drag. Furthermore, quantitatively, the drag resistivities near sDPs are smaller than those near oDP and they deviate from T^{2} dependence below ∼100 K. Our work demonstrates that the drag experiment can be used to investigate the coupling between the carriers in moiré minibands and those in original Dirac bands which can be extended to other moiré materials.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.