Abstract

We study the Coulomb drag between two strange-metal layers using the Einstein-Maxwell-Dilaton model from holography. We show that the low-temperature dependence of the drag resistivity is $\rho_D \propto T^4$, which strongly deviates from the quadratic dependence of Fermi liquids. We also present numerical results at room temperature, using typical parameters of the cuprates, to provide an estimate of the magnitude of this effect for future experiments. We find that the drag resistivity is enhanced by the plasmons characteristic of the two-layer system.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.