Abstract

We address Coulomb drag and near-field heat transfer in a double-layer system of incoherent metals. Each layer is modeled by an array of tunnel-coupled SYK dots with random interlayer interactions. Depending on the strength of intradot interactions and interdot tunneling, this model captures the crossover from the Fermi liquid to a strange metal phase. The absence of quasiparticles in the strange metal leads to temperature-independent drag resistivity, which is in strong contrast with the quadratic temperature dependence in the Fermi liquid regime. We show that all the parameters can be independently measured in near-field heat transfer experiments, performed in Fermi liquid and strange metal regimes.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call