Abstract
We investigate nonequilibrium transport properties of a quantum dot in the Coulomb blockade regime under the condition of negligible inelastic scattering during the dwelling time of the electrons in the dot. Using the quantum kinetic equation we show that the absence of thermalization leads to a double step in the distribution function of electrons on the dot, provided that it is symmetrically coupled to the leads. This drastically changes nonlinear transport through the dot resulting in an additional (compared to the thermalized case) jump in the conductance at voltages close to the charging energy, which could serve as an experimental manifestation of the absence of thermalization.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have