Abstract

The regularized 13-moment equations for rarefied gas flows are considered for planar microchannel flows. The governing equations and corresponding kinetic boundary conditions are partly linearized, such that analytical solutions become feasible. The nonlinear terms include contributions of the shear stress and shear rate, which describe the coupling between velocity and temperature fields. Solutions for Couette and force-driven Poiseuille flows show good agreement with direct simulation Monte Carlo data. Typical rarefaction effects, e.g., heat flux parallel to the wall and the characteristic dip in the temperature profile in Poiseuille flow, are reproduced accurately. Furthermore, boundary effects such as velocity slip, temperature jump, and Knudsen boundary layers are predicted correctly.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.