Abstract

Microscale gas flows between two rotating coaxial circular cylinders of infinite length with different temperatures are investigated. Navier-Stokes-Fourier (NSF) and regularized 13-moment (R13) equations in their linear form are used to independently analyze velocity and temperature fields in shear-driven rotary flows, i.e., cylindrical Couette flows. Knudsen boundary layers, which present non-Newtonian stress and non-Fourier heat flow, are predicted as the dominant rarefaction effects in the linear theory. We show that the R13 system yields more accurate results for this boundary value problem by predicting the Knudsen boundary layers, which are not accessible for NSF equations. Furthermore, a set of second-order boundary conditions for velocity slip and temperature jump are derived for the NSF system. It is shown that the proposed boundary conditions effectively improve the classical hydrodynamics. The accuracy of NSF and R13 equations is discussed based on their comparison with available direct simulation Monte Carlo data.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call