Abstract

Flowback water generated during shale gas extraction in Pennsylvania is mostly reused for hydraulic fracturing operation. Abandoned mine drainage (AMD), one of the most widespread threats to water quality in Pennsylvania, can potentially serve as a make-up water source to enable flowback water reuse. This study demonstrated co-treatment of flowback water and AMD produced in northeastern Pennsylvania in a pilot-scale system consisting of rapid mix reactor, flocculation tank and sedimentation tank. Sulfate concentration in the finished water can be controlled at a desired level (i.e., below 100 mg/L) by adjusting the ratio of flowback water and AMD in the influent. Fe3+ contained in the AMD can serve as a coagulant to enhance the removal of suspended solids, during which Fe2+ is co-precipitated and the total iron is reduced to a desirable level.Solid waste generated in this process (i.e., barite) will incorporate over 99% of radium present in the flowback water, which offers the possibility to control the fate of naturally occurring radioactive materials (NORM) brought to the surface by unconventional gas extraction. Sludge recirculation in the treatment process can be used to increase the size of barite particles formed by mixing flowback water and AMD to meet specifications for use as a weighting agent in drilling fluid. This alternative management approach for NORM can be used to offset the treatment cost and promote flowback water reuse, reduce environmental impacts of AMD and reduce pressure on fresh water sources.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call