Abstract

Most factors that regulate gene transcription in eukaryotic cells are multimeric, often large, protein complexes. The understanding of the biogenesis pathways of such large and heterogeneous protein assemblies, as well as the dimerization partner choice among transcription factors, is crucial to interpret and control gene expression programs and consequent cell fate decisions. Co-translational assembly (Co-TA) is thought to play key roles in the biogenesis of protein complexes by directing complex formation during protein synthesis. In this review we discuss the principles of Co-TA with a special focus for the assembly of transcription regulatory complexes. We outline the expected molecular advantages of establishing co-translational interactions, pointing at the available, or missing, evidence for each of them. We hypothesize different molecular mechanisms based on Co-TA to explain the allocation “dilemma” of paralog proteins and subunits shared by different transcription complexes. By taking as a paradigm the different assembly pathways employed by three related transcription regulatory complexes (TFIID, SAGA and ATAC), we discuss alternative Co-TA strategies for nuclear multiprotein complexes and the widespread – yet specific – use of Co-TA for the formation of nuclear complexes involved in gene transcription. Ultimately, we outlined a series of open questions which demand well-defined lines of research to investigate the principles of gene regulation that rely on the coordinated assembly of protein complexes.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.