Abstract

The purpose of this study was to construct an 'artificial beta cell' that can exhibit physiologic glucose-stimulated insulin secretion for the treatment of type 1 diabetes. Retroviral vector containing the glucokinase (GK) gene and mutated human proinsulin (mhPINS) gene was constructed. HepG2 cells were first infected with recombinant retrovirus carrying the GK and mhPINS genes, then selectively cultured with G418 to obtain the positive clones. GK and mhPINS gene transcription and expression were identified by radioimmunity, Western blot and RT-PCR techniques. Finally, the dose-response effect of glucose on insulin secretion from those HepG2 cells that expressed both GK and mhPINS genes was tested with HepG2 cells that only expressed the mhPINS gene as a control. HepG2 cells with transferred GK and mhPINS genes were selectively cultured with G418 and the positive clones were obtained in 3 weeks. Four clones with GK and mhPINS gene expression were selected from 20 positive clones by radioimmunity and Western blot. We picked up one clone with a strong GK and mhPINS gene expression and named it clone Beta. In clone Beta, differences in insulin secretion at 0.5 and 0.75 mmol/L glucose concentrations were not significant (P>0.05) and differences in insulin secretion at 2.0, 3.0, 4.0, 5.0 and 6.0 mmol/L glucose concentrations were not significant (P>0.05), while there were significant differences in insulin secretion at other glucose concentrations(P<0.05). The artificial beta cell, clone Beta, obtained a glucose-stimulated insulin secretion with maximal insulin secretion at 1.75-2.00 mmol/L glucose concentrations. An artificial beta cell that exhibits glucose-stimulated insulin secretion can be constructed successfully.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.