Abstract

Monascus pigments (MPs), the secondary metabolites produced by the fungal strains of Monascus spp., hold commercial importance in not only the food and meat industries, but also therapeutic, cosmetic, and textile industries. To reduce the cost of MPs production, the utilization of rice straw hydrolysate as a substrate in submerged fermentation was investigated. The atmospheric and room temperature plasma (ARTP) mutation system was employed to develop a mutant strain Monascuspurpureus M630, with high total extracellular Monascus pigments (exMPs) production of 34.12U/mL in submerged fermentation with glucose-based medium. The results revealed that M. purpureus M630 produces 8.61U/mL and 20.86U/mL of exMPs in rice straw hydrolysate alone or in combination with glucose fermentation medium, respectively. Furfural (Fur) and 5'-hydroxymethyl furfural (5'-HMF), produced during pretreatment and hydrolysis of rice straw; are generally inhibitory for microbial growth and fermentation. Our findings revealed that M. purpureus M630 develops the tolerance and adaptation mechanisms in response to 5'-HMF and Fur during growth and MPs biosynthesis in rice straw hydrolysate. In conclusion, we report that rice straw hydrolysate can serve as an efficient and low-cost substitute for the MP production through submerged fermentation by Monascus spp.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.